加入收藏 | 设为首页 | 会员中心 | 我要投稿 牡丹江站长网 (https://www.0453zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

如何优化策略游戏

发布时间:2021-04-20 16:21:22 所属栏目:动态 来源:互联网
导读:根据江门站长网 Www.0750Zz.Com报道 发的 Chimera 是一个游戏原型,在开发过程中依赖了大量的机器学习。对于游戏本身,我们有针对性地设计了规则,扩大了可能性空间,使得很难通过传统的人工构建的 AI 来进行游戏。 Chimera 的玩法围绕奇美拉(Chimera,神话生
根据江门站长网  Www.0750Zz.Com报道


发的 Chimera 是一个游戏原型,在开发过程中依赖了大量的机器学习。对于游戏本身,我们有针对性地设计了规则,扩大了可能性空间,使得很难通过传统的人工构建的 AI 来进行游戏。

Chimera 的玩法围绕奇美拉(Chimera,神话生物)展开,这些生物混合体将由玩家强化和进化。游戏的目标是打败对手的奇美拉。游戏设计中的关键点如下:

  • 玩家可以:
  1. 操控生物,可发出攻击(使用攻击统计,attack stat)或受到攻击(减少生命统计,health stat);
  2. 使用法术,产生特殊效果。
  • 生物被召唤到容量有限的生物群系,实际放置于牌桌空间。每个生物都有对应的偏好生物群系,如果被放置于不正确的生物群系或超出容量的生物群系则会受到重复伤害。
  • 玩家控制的是一只奇美拉,奇美拉最开始处于基本的“蛋”状态,通过吸收生物来进化和强化。为此,玩家还必须通过各种游戏机制获得一定的链接能量。
  • 当玩家成功将对方奇美拉的生命降至 0 时,游戏就会结束。

学习玩 Chimera

Chimera 是一款具有较大状态空间的不完美信息博弈 (Imperfect Information) 卡牌游戏,我们预计这会让 ML 模型难以学习,并且我们的目标还是一个相对简单的模型。我们的方法受 AlphaGo 等早期对弈智能体使用的方法启发,其中卷积神经网络 (CNN) 被训练来预测给定任意对弈状态下的获胜概率。在随机移动的对局上训练初始模型后,我们设置智能体与自己对战,反复收集对局数据,然后用于训练新的智能体。每次迭代后,训练数据的质量都会提高,智能体的游戏能力也会增强。于模型接收为输入的实际游戏状态表征,我们发现将“图像”编码传递给 CNN 可获得最佳表现,结果超过了所有基准程序智能体和其他类型的网络(如完全连接)。选择的模型架构足够小,可以在合理时间内在 CPU 上运行。我们因此能够下载模型权重,并使用 Unity Barracuda 在 Chimera 游戏客户端中实时运行智能体。相同时间内,模拟方法可比真实玩家能够完成的对局多出数百万场。在收集了表现最好的智能体的游戏数据后,分析结果显示出我们设计的两种玩家卡组之间的不平衡。

首先,Evasion Link Gen 卡组的法术和生物能产生额外的链接能量进化玩家的奇美拉。它还包含使生物能够闪避攻击的法术。相比之下,Damage-Heal 卡组的生物具有多种实力和专注于治疗与造成轻微伤害的法术。虽然我们将这两套卡组设计为具有相同的实力,但是 Evasion Link Gen 卡组在与 Damage-Heal 卡组对战时取得了 60% 的胜率。

在我们收集与生物群系、生物、法术和奇美拉进化相关的各种统计数据后,有两个结果立刻浮现出来:

  1. 进化奇美拉可以带来显著优势 - 奇美拉进化次数更多的智能体更有可能赢得对局。然而,每场对局的平均进化次数并没有达到我们的预期。为了让它成为更核心的游戏机制,我们要增加总体平均进化次数,同时保持其使用策略。
  2. 霸王龙生物过于强大。它的出现与胜利密切相关,而且模型将始终选择霸王龙,不考虑召唤到错误或过度拥挤的生物群系的惩罚。

根据这些分析结果,我们对游戏做出了一些调整:

  1. 为了强调奇美拉进化是游戏的核心机制,我们将进化奇美拉所需的链接能量从 3 减少到 1。
  2. 我们还为霸王龙生物增加了一个“冷却”期,使其从任何行动中恢复的时间都增加了一倍。

使用更新后的规则重复“自我对局”训练程序,结果显示这些调

(编辑:牡丹江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!