如何优化策略游戏
根据江门站长网 Www.0750Zz.Com报道 发的 Chimera 是一个游戏原型,在开发过程中依赖了大量的机器学习。对于游戏本身,我们有针对性地设计了规则,扩大了可能性空间,使得很难通过传统的人工构建的 AI 来进行游戏。 Chimera 的玩法围绕奇美拉(Chimera,神话生物)展开,这些生物混合体将由玩家强化和进化。游戏的目标是打败对手的奇美拉。游戏设计中的关键点如下:
学习玩 ChimeraChimera 是一款具有较大状态空间的不完美信息博弈 (Imperfect Information) 卡牌游戏,我们预计这会让 ML 模型难以学习,并且我们的目标还是一个相对简单的模型。我们的方法受 AlphaGo 等早期对弈智能体使用的方法启发,其中卷积神经网络 (CNN) 被训练来预测给定任意对弈状态下的获胜概率。在随机移动的对局上训练初始模型后,我们设置智能体与自己对战,反复收集对局数据,然后用于训练新的智能体。每次迭代后,训练数据的质量都会提高,智能体的游戏能力也会增强。于模型接收为输入的实际游戏状态表征,我们发现将“图像”编码传递给 CNN 可获得最佳表现,结果超过了所有基准程序智能体和其他类型的网络(如完全连接)。选择的模型架构足够小,可以在合理时间内在 CPU 上运行。我们因此能够下载模型权重,并使用 Unity Barracuda 在 Chimera 游戏客户端中实时运行智能体。相同时间内,模拟方法可比真实玩家能够完成的对局多出数百万场。在收集了表现最好的智能体的游戏数据后,分析结果显示出我们设计的两种玩家卡组之间的不平衡。 首先,Evasion Link Gen 卡组的法术和生物能产生额外的链接能量进化玩家的奇美拉。它还包含使生物能够闪避攻击的法术。相比之下,Damage-Heal 卡组的生物具有多种实力和专注于治疗与造成轻微伤害的法术。虽然我们将这两套卡组设计为具有相同的实力,但是 Evasion Link Gen 卡组在与 Damage-Heal 卡组对战时取得了 60% 的胜率。 在我们收集与生物群系、生物、法术和奇美拉进化相关的各种统计数据后,有两个结果立刻浮现出来:
根据这些分析结果,我们对游戏做出了一些调整:
使用更新后的规则重复“自我对局”训练程序,结果显示这些调 (编辑:牡丹江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |